First IBEX observations of the terrestrial plasma sheet and a possible disconnection event

D.J. McComas1,2, M.A. Dayeh1, H.O. Funsten3, S. A. Fuselier4, J. Goldstein1,2, J.-M. Jahn1,2, P. Janzen5, D.G. Mitchell6, S.M. Petrinec4, D.B. Reisenfeld5, N.A. Schwadron7,1

1 Southwest Research Institute, San Antonio, TX 78228, USA (dmccomas@swri.org)
2 University of Texas at San Antonio, San Antonio, TX 78249, USA
3 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
4 Lockheed Martin Advanced Technology Center, Palo Alto, CA 94304, USA
5 University of Montana, Missoula, MT, USA
6 Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
7 University of New Hampshire, Durham, NH, USA

Abstract. The Interstellar Boundary Explorer (IBEX) mission has recently provided the first all-sky maps of Energetic Neutral Atoms (ENAs) emitted from the edge of the heliosphere as well as the first observations of ENAs from the Moon and from the magnetosheath stagnation region at the nose of the magnetosphere. This study provides the first IBEX images of the ENA emissions from the night side magnetosphere and plasma sheet. We show images from two IBEX orbits – one that displays typical plasma sheet emissions, which correlate reasonably well with a model magnetic field, and a second that shows a significant intensification that may indicate a near-Earth (~10 R\textsubscript{E} behind the Earth) disconnection event. IBEX observations from ~0.5-6 keV indicate the
simultaneous addition of both a hot (several keV) and colder (~700 eV) component during the intensification; if IBEX directly observed magnetic reconnection in the magnetotail, the hot component may signify the plasma energization.

1.0 Introduction

Energetic neutral atoms (ENAs) emitted from the Earth’s magnetosphere are energetic ions that neutralize by charge exchange with the cold (few eV) neutral atoms in the geocorona, which surrounds the Earth. Since the original serendipitous observations of energetic neutral atoms (ENAs) emanating from the Earth’s magnetosphere over two decades ago [Roelof, 1987], ENA observations have become increasingly important for understanding the global magnetospheric system. These observations have included limited high energy ENA images from the Polar spacecraft [e.g., Henderson et al., 1997] and broad energy coverage observations from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission [Burch, 2000]. IMAGE flew largely during geomagnetically active times from 2000-2005, and the bulk of its ENA studies focused on magnetosphere dynamics, including magnetospheric substorms [Pollock et al. 2003, and references therein] and storms [e.g., Pollock et al. 2001; Brandt et al., 2002; McComas et al. 2002; Skoug et al. 2003; Perez et al. 2004 a, b; DeMajistre et al. 2004; Henderson et al. 2006; Zaniewski et al. 2006].

In contrast to the single point observations from IMAGE, the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission [McComas et al., 2009a] began making stereo ENA images of the magnetosphere in June 2008; these observations have
continued through the deepest solar minimum of the space age. In spite of the
geomagnetically quiet times, TWINS observations are contributing importantly to the
understanding of small storms (minimum Dst ~ -70) [Valek et al., 2010] and bright low
altitude emissions, which paint precipitating ring current ion fluxes onto the Earth’s
upper atmosphere [e.g., Bazell et al., 2010]. Simultaneous TWINS observations from
widely separated vantage points have allowed inversion of the magnetospheric ion
distributions, which were able to reasonably reproduce in situ ion observations measured
by THEMIS, both in terms of magnitude and the observed multi-peaked radial profile
[Perez et al., 2010; Grimes et al., 2010]. Perez et al. [2010] further showed that these
observations can be inverted to provide accurate pitch angle distributions over the entire
ring current spatial distribution. The complementary analysis technique of forward
modeling from the dual TWINS vantage points was recently applied to a weak storm
from 2008, producing global ion distributions whose modeled ENA images agree with
TWINS to within about 20% [Brandt et al., 2010]. TWINS observations have also been
especially suitable for comparison to global magnetospheric modeling because TWINS
provides essentially continuous global coverage throughout entire storm events with
periodic stereo viewing intervals. For example, Buzulukova et al. [2010] used the
Comprehensive Ring Current Model in combination with TWINS data to explain weak-
storm post-midnight enhancements. As valuable as the dual vantage point stereo imaging
from TWINS is for unfolding magnetospheric ENA images of the inner magnetosphere,
these generally nadir viewing measurements are taken from near the Earth (<8 RE), where
obliquely viewing the tenuous plasma sheet down the tail is very difficult.
The extent and structure of the geocorona are critical to quantitatively understanding magnetospheric ENA emissions. The most recent analyses of the geocorona used new observations from the Ly-α detectors [Nass et al., 2006] on TWINS [McComas et al., 2009a]. Zoennchen et al. [2010] inverted Ly-α line-of-sight intensities to reconstruct the three dimensional density structure of the hydrogen geocorona at geocentric distances from 3-7 R_E during the recent quite solar conditions. These authors found hydrogen densities consistent with previous results [Hodges, 1994; Rairden et al., 1986; Østgaard et al., 2003] close to the Earth, but higher densities at >3.5 R_E and an anti-sunward enhancement indicating an extended hydrogen “geotail.”

In contrast to the “bright” low altitude emissions and routinely observable ring current emissions, this study examines dim ENA emissions from the more distant plasma sheet, where the geocorona is extremely tenuous. McComas et al. [2002] provided the first ENA observations of the extended plasma sheet as a function of distance down the magnetotail using observations from the Medium Energy Neutral Atom (MENA) imager on IMAGE in a high-latitude nearly polar Earth orbit (apogee ~8 R_E). These authors focused on enhanced emissions during two large magnetospheric storms and needed to integrate ENAs from across the entire tail width in order to produce adequate statistics. Nonetheless, these authors demonstrated that ENA emissions can be observed to several tens of R_E deep in the magnetotail and that enhanced emissions (high densities in the distant plasma sheet) are associated with high densities both in the solar wind and plasma sheet at geosynchronous orbit. Using the same viewing from IMAGE [Scime et al., 2002] and then TWINS [Keesee et al., 2010], generated average energy spectra from many days
worth of viewing to produce average ion temperature maps of the deeper magnetotail. Finally, Brandt et al. [2002] examined 10-60 keV plasma sheet and ring current emissions using data from the IMAGE High Energy Neutral Atom (HENA) imager. These authors integrated all ENAs from ~8-14 Re and across the entire tail to find rapid decreases in integrated ENA fluxes around the time of magnetic dipolarizations, which were followed within 10-20 minutes by ion injections at geosynchronous orbit. These authors also found larger than expected plasma sheet ENA fluxes and suggested that exospheric densities on the night side may be enhanced over symmetric models of the geocorona, consistent with the recent, direct observations from TWINS [Zoennchen et al., 2010].

The Interstellar Boundary Explorer (IBEX) mission (see McComas et al. [2009b] and other papers in the IBEX Special Issue of Space Science Reviews) was launched 19 October 2008. IBEX has already provided the first global observations and maps of the heliosphere’s interstellar interaction [McComas et al., 2009c; Fuselier et al., 2009; Funsten et al., 2009a; Schwadron et al., 2009], first direct observations of interstellar H and O drifting in from the local interstellar medium [Möbius et al., 2009], first observations of ENAs from the Moon [McComas et al., 2009d] and first images of the Earth’s subsolar magnetosheath [Fuselier et al., 2010]. In this study we show the first images of the terrestrial plasma sheet and magnetotail using data from IBEX. In contrast to IMAGE and TWINS, IBEX views the magnetotail largely from the side and from outside the magnetosphere. Furthermore, IBEX’s huge sensitivity allows spatially and temporally resolved ENA measurements of the very low ENA fluxes from the distant tail.
2.0 Observations

The IBEX spacecraft rotates at ~4 RPM with its spin axis pointed roughly toward the Sun. Figure 1 shows the geometry for Orbit 51, data from which is analyzed in detail later in the paper. At the start of each ~7.5 day orbit, near perigee, the spin axis is pointed slightly west of the Sun (~1.5º). Because the spacecraft is in Earth orbit, its inertially-fixed spin axis appears to drift eastward, across the Sun, and ends ~6º east of the Sun by the next perigee and repointing maneuver. The IBEX-Hi and –Lo sensors view perpendicular to the spin axis, collecting ENAs as a function of spin angle. This configuration provides extremely high sensitivity ENA observations of each ~7º wide (FWHM) swath of the sky every six months [McComas et al., 2009b].

In contrast to heliospheric observations, viewing of the magnetosphere is driven by the fact that the magnetosphere is always aligned with the sunward direction (actually aberrated ~5º by the Earth’s orbital motion compared to the solar wind), so in an Earth-based reference frame, IBEX’s orbital axis appears to rotate around the Earth by 360º each year. During the winter, IBEX’s apogee is sunward of the Earth and it does not view the magnetosphere except close to perigee; in the summer, IBEX is embedded in the magnetosphere and magnetotail throughout its orbit. However, twice per year, IBEX moves around the flanks of the magnetosphere on successive orbits and provides excellent viewing of various regions of the magnetosphere. In the spring of each year IBEX views the magnetosphere from the dawn side, while in the fall it views the magnetosphere from the dusk side, as shown in Figure 1. In these orbits, IBEX’s viewing
perpendicular to its nearly Sun-pointed spin axis provides continuous cuts through the magnetosphere with comparatively slow variations in position as the spacecraft moves along its orbit (e.g., the thicker “selected data” portion of this orbit is nearly two days). The IBEX sensors’ field-of-view (FOV) is +/- 3.5º FWHM, so from a position ~45 R_E to the side (Y), the FOV instantaneously views a swath ~5.5 R_E wide in down tail (Z) distance, and integrates ENAs arriving from everywhere within this region. The more distant viewing of the plasma sheet from the side provides an excellent geometry to look for variations in the location and thickness of the plasma sheet generally, and thinning and disconnection events, in particular.

Figure 2 shows a view of the magnetosphere and plasma sheet in ENAs from IBEX; this image was produced with data from Orbit 52, which is nearly identical to Orbit 51, but rotated ~7º clockwise from that shown in Figure 1. Geomagnetic activity was extremely quiet over Orbit 52, so it provides a good example of ENA emissions from the expected quiet-time configuration of the magnetosphere. Both ENA images shown in this paper are from IBEX-Hi energy step 5 with a central energy of 2.7 keV (2.0-3.8 keV FWHM), and use triple coincidence measurements, which have extremely low backgrounds [Funsten et al., 2009b]. The ENA emissions shown in Figure 2 are line-of-sight integrated measurements of the convolution of the magnetospheric ion flux and geocoronal neutral density. None-the-less, they clearly “paint out” the densest portions of the plasma sheet, largely following the modeled magnetic structure. Images in other IBEX energy passbands are similar and also follow the expected magnetic structure.
The magnetospheric ENA emissions, and thus ion density, show enhancements from the ring current region inside ~6 \(R_E \); emissions from this region are also bright because the geocoronal density (and thus neutrals available for charge exchange) drops off with distance from the Earth, so ENAs are preferentially emitted from closer distances within the IBEX FOV. In the tail, the brighter emissions generally follow the superposed magnetic field model with the greatest enhancements in the plasma sheet region, which generally fills the central portion of the tail (e.g., Slavin et al., 1985; Mukai et al., 1996). Regions of little emission along the top and bottom of the tail in this image are the low density lobes, which are “open” or magnetically connected to both the Earth and the solar wind. The cross-tail current sheet and plasma sheet appears to be several \(R_E \) thick, consistent with statistical studies of in situ plasma and field observations (e.g., Kaufmann et al., 2001). In addition, the plasma sheet can appear thicker in ENA images for several reasons. First, because the image comprises ENAs generated at various positions across the plasma sheet it averages over source regions that vary significantly as a function of \(Y_{GSE} \). Also, because of the offset of the Earth’s magnetic dipole from its rotation axis, the plasma sheet flaps up and down over the course of each day. Hammond et al. [1994] did a statistical analysis of in situ data to examine the complicated shape and behavior of the plasma sheet and tail boundaries; these authors showed that neutral sheet is highly warped with the largest deflections in the middle of the magnetotail near times of the solstices (these images were made about half way between equinox and solstice). Finally, since IBEX’s orbit carries it from a few \(R_E \) above to a few \(R_E \) below the equatorial plane, the plasma sheet also appears thicker due to the line-of-sight not being coplanar with the plasma sheet.
Orbit 51 provides an even more interesting example of the power of IBEX’s side-viewing perspective of the magnetosphere. Here the ENA flux, and thus the likely plasma sheet source configuration changes significantly over the time viewed. Figure 3 shows an image of the ENA flux observed by IBEX over the interval from 21:21 UT on 10/27/2009 to 13:40 UT on 10/29/2009. This interval is indicated by the thicker line segment of the orbit, labeled “Selected Data” in Figure 1, and represents times near apogee when IBEX was ~45 RE off the side of the Earth and moving very slowly tailward. This image was constructed in GSE coordinates like Figure 2 and uses the same color bar for differential flux. In contrast to Figure 2, however, the highest ENA fluxes no longer generally follow the model magnetic field, but instead the spatial and temporal variation in the ENA flux are strongly suggestive of a plasma sheet disconnection event occurring somewhere in the inner magnetosphere at ~10 RE behind the Earth. Here we use the term “plasma sheet disconnection” event rather generally, based on the apparent brightening in ENAs at greater down-tail distances. One of the obvious interpretations is that the plasma sheet could have been removed in the form of a plasmoid (e.g. Hones et al., 1984). Indeed, small flux ropes plasmoids are now known to form frequently as a result of reconnection in the near-tail at ~10 RE (i.e. Slavin et al., 2003) as opposed to the 20-30 RE distances where reconnection most frequently occurs (Nagai et al., 1998).

The top panel of Figure 4 shows ENA counts in IBEX-Hi energy step 5 in each 96 spin (~24 minute) interval, as a function of angle from the north ecliptic pole (NEP). Vertical brighter bands near the start and end of the orbit are produced by background when the
spacecraft was within the magnetosphere. The rest of the orbit is largely quiet with clear magnetospheric emissions at an NEP angle centered at ~90° (prograde in the ecliptic plane). The magnetospheric ENAs drop off over time as IBEX moves slowly tailward, and the emission region viewed maps to progressively greater distances and lower geocoronal densities. However, on 29 October there is a clear intensification of the ENA flux, which indicates an episodic and significant enhancement of ENA emissions from ~10 R_E back in the magnetotail.

The red box in the top panel of Figure 4 highlights ENAs from the magnetotail (within +/-15° centered on the GSE X-axis) for 29 October; all three of the lower panels show observations for this day only. The second panel provides the total counts in each ~24 minute bin. Emissions dropped off to ~10 counts in ESA 5, which corresponds to a triple coincidence rate of ~0.05 Hz. Then at ~10:20 UT the ENA flux abruptly rises to 2-3 times its earlier value. There are significant variations in the ENA counts between ~10:20 and ~15:00, which are much greater than before or after this interval and are larger than expected for Poisson statistics; these variations could indicate further dynamical processes occurring within this region of the tail on much shorter timescales. In fact, the initial intensification is largely contained within a single ~24 minutes sample, giving a time scale for very enhanced emissions in the IBEX FOV consistent with rapid magnetotail dynamic timescales.

The bottom two panels of Figure 4 show ACE SWEPAM and MAG data, which have been shifted to account for the propagation time from ACE at L1 to the magnetopause as
a part of the OMNI data set. The third panel shows that the abrupt increase in ENA emissions from the tail at ~10:20 UT occurred after many hours of northward BZ and a prolonged (~10 hour) rotation of the BY from +5 to -10 nT. At the time of the intensification, the solar wind pressure was in the middle of a two hour increase from ~1.5 to ~3 nPa.

Figure 5 provides the spectral shape of ENA emissions both before and after the intensification shown in the top two panels of Figure 4. Starting with the dimmest emissions from 1:00-6:00 UT (red), the emissions became generally brighter from 6:00-10:20 UT (yellow), but retain the same spectral shape. Then, the ENA fluxes increased with the intensification (10:20-14:00), and decayed back to mostly pre-intensification levels at higher energies (>1 keV) between 14:00-18:00 UT (blue). The intensification at ~10:20 occurred both at lower energies (<1 keV) and higher energies (2-5 keV), with little change around 1 keV. Interestingly, this event shows the simultaneous addition of both hot and cold plasma components with the hot component decaying away while the cold component persists.

3. Discussion

The event observed by IBEX on 29 October is complex and there may be alternate interpretations that could plausibly account for it. However, as visually suggested by Figure 3, the observations may show a plasma sheet disconnection event in the near-tail (roughly -10 RE) region – possibly in the form of a plasmoid (e.g. Hones et al., 1984) or flux rope (i.e. Slavin et al., 2003). Throughout the ENA intensification the IMF is
extremely benign with northward B_z and little convection electric field. The 3-hour Kp index was no greater than one for the entire first half of the day, and Dst was near zero. All-in-all, this was an extremely quiet day and there was no obvious trigger for the intensification in ENA emissions.

An approximate factor-of-two pressure increase arrived at the magnetopause between ~9:30 and 10:30 UT, with the intensification coincident with the second half of this increase to within the ENA integration interval (~24 minutes). This external pressure increase could certainly make the amount of magnetic flux stored in the magnetotail unsustainable and may have driven the magnetotail to shed magnetic flux through a small plasma sheet disconnection event. If this is a near-Earth reconnection event that occurred within IBEX’s FOV, then the spectral information in Figure 5 could be directly showing the particle energization via reconnection across the plasma sheet (the hotter component). In this case, the cooler component might be lower energy plasma expanding tailward as the plasmoid disconnects and moves down the tail; it is interesting that this cooler plasma enhancement persists after the intensification while the hotter component seems to be associated only with the time of the intensification.

A second possible interpretation of the ENA intensification is adiabatic acceleration of plasma sheet ions due to sudden magnetotail compression caused by an enhancement of solar wind dynamic pressure. Keika et al. [2008] showed that the time profile of the total pressure in the plasma sheet is well correlated with that of an impulsive enhancement of the solar wind dynamic pressure. Miyashita et al. [2010] reported three tail-compression
events, which showed an increase in ion temperature and pressure in the plasma sheet. Such adiabatic heating can intensify ENA emissions from the plasma sheet even during otherwise extremely quite conditions, such as those surrounding this event. Furthermore, the evolution of energy spectra observed here could also be consistent with adiabatic heating/acceleration.

Yet another possible interpretation is that a substorm injection could have occurred deeper in the magnetotail, beyond the distance that IBEX was viewing. Such an event might cause significantly enhanced plasma sheet densities to enter IBEX’s FOV from deeper in the tail as the magnetic field becomes more dipolar and plasma sheet material inside the X-line is accelerated earthward. However, there is little evidence for an actual substorm in the geomagnetic indices. This event might also be a “pseudo-breakup.” Such events may involve reconnection and current sheet acceleration, but end before the reconnection reaches lobe field lines. In that case, there might only be partial disconnection, without establishing a significant field aligned current system, consistent with the extremely quiet AE and other indices during this period.

It is interesting to note that the ENA fluxes shown in this study represent geomagnetically quiet times. Large substorms and storms and times of enhanced plasma sheet density should emit significantly more ENAs. For this study we used ~24 minute integration times in order to get adequate counting statistics, however, IBEX reports individual ENAs (Direct Events) with extremely high precision (30s and <0.1° in spin phase), so
much higher time resolution of magnetospheric activity can be readily achieved with IBEX when there are adequate ENA fluxes.

In this brief study we have shown the first remote observations of the plasma sheet from outside the magnetosphere. IBEX’s near-ecliptic, highly elliptical orbit and extremely high sensitivity ENA cameras provide a truly unique opportunity to study magnetospheric, magnetotail and plasma sheet emissions, morphology, and dynamics from an external, side-viewing vantage point. The IBEX magnetosphere data set is rich with spatial and temporal variations in ENA fluxes and detailed spectral information. Finally, we look forward to collaborative analyses with complimentary magnetospheric ENA observations from TWINS and with a variety of local, in situ measurements from various current and soon-to-be-launched spacecraft (e.g., THEMIS, MMS, RBSP, etc.), which should lead to a continuing and bountiful harvest of important new magnetospheric physics results.

Acknowledgements. We thank all the outstanding men and women who have made IBEX such a great success and gratefully acknowledge the ACE SWEPAM and MAG Teams as well as the OMNI combined data set. Work at LANL was carried out under the auspices of the U.S. Department of Energy. This research was carried out as a part of the NASA IBEX mission.

References
Bazell, D., E. Roelof, T. Sotirelis, P. Brandt, H. Nair, P. Valek, J. Goldstein, and D.
McComas (2010), Comparison of TWINS images of Low-Altitude Emissions (LAE)
of Energetic neutral atoms (ENA) emissions with DMSP precipitating ion fluxes, J.

IMAGE/high-energy energetic neutral atom: Global energetic neutral atom imaging
of the plasma sheet and ring current during substorms, J. Geophys. Res., 107(A12),

and D.J. McComas (2010), Simultaneous TWINS and THEMIS observations of the
spatial, spectral and pitch-angle ion distributions of the ring current, J. Geophys. Res.,
(in press).

Buzulukova, N., M.-C. Fok, J. Goldstein, P. Valek, D.J. McComas, and P.C. Brandt
(2010), Ring current dynamics in modest and strong storms: comparative analysis of

DeMajistre, R., E.C. Roelof, P.C. Brandt and D.G. Mitchell (2004), Retrieval of global
magnetospheric ion distributions from high energy neutral atom (ENA)
measurements by the IMAGE/HENA instrument, J. Geophys. Res., 109, A04214,

Funsten, H.O., et al. (2009a), Structures and spectral variations of the outer heliosphere in

An ISEE 3 study of average and substorm conditions in the distant magnetotail, *J. Geophys. Res.*, 90, 10,875-10,895.

Moldwin, T. Nagai, A. Ieda, and T. Mukai (2003), Geotail observations of magnetic

Tsyganenko, N.A. (1995), Modeling the Earth's magnetospheric magnetic field confined
within a realistic magnetopause, *J. Geophys. Res.*, 100, 5599-5612.

Valek, P., P.C. Brandt, N. Buzulukova, M.-C. Fok, J. Goldstein, D.J. McComas, J.D.
Perez, E. Roelof, and R. Skoug (2010), Evolution of low altitude and ring current
ENA emissions from a moderate magnetospheric storm: Continuous and

Evolution of remotely measured inner magnetospheric ion temperatures during a

density derived from TWINS Ly-alpha-data, *Ann. Geophys.*, 28, 1221,
Figure Captions

Figure 1. Diagram of IBEX orbit 51 which extends from 10/27/2009-11/2/2009. IBEX’s highly elliptical and near-ecliptic orbit provides nearly ideal viewing of vertical cuts (grey FOV) through the magnetosphere and plasma sheet from the side. The thicker “selected data” portion of the orbit is used to generate the image in Figure 3.

Figure 2. Differential fluxes of observed ENAs projected onto the GSE X-Z plane. This image shows time averaged ENA fluxes in IBEX-Hi energy step 5 (2.0-3.8 keV FWHM) from 10:48 UT on 11/05/2009 to 02:23 UT on 11/07/2009. Note that the instantaneous FOV of IBEX is ~5.5 R_E wide (lower right corner), so the image was built up as IBEX’s viewing moved slowly down the tail. Field lines were generated with the CCMC Tsyganenko model for the central time of the data interval covered.

Figure 3. IBEX ENA image of a possible disconnection event at ~10:20 UT on 10/29/2009, using ENAs in the same energy range and the same projection and color bar as in Figure 2. It is important to note that neither this figure nor Figure 2 are snapshots, but instead integrate ENA fluxes as IBEX’s viewing swath (FWHM viewing width show in lower right corner) moved slowly down the tail – in this figure averaging fluxes from 21:21 UT on 10/27/2009 to 13:40 UT on 10/29/2009.

Figure 4. IBEX-Hi energy step 5 (2.0-3.8 keV FWHM) ENA counts for all of IBEX orbit 51 (top panel), with the magnetospheric emissions producing the bright band at an NEP angle of ~90°. The lower three panels show details from 29 October 2009, when the
intensification occurred. The second panel gives the integrated counts over 30° in spin phase centered on the magnetotail. The bottom two panels show propagated ACE solar wind parameters for this day.

Figure 5. ENA energy spectra for two intervals before (red and yellow) and two intervals after (green and blue) the rapid intensification. Error bars indicate Poisson statistical errors based on the square root of the counts in each sample.